
M-Rt87 556 DECOMPOSING PROPERTIES INTO SAFETY AND LIVENESS USING 1/1
PREDICATE LOGIC(U) CORNELL UNIV ITHACA NY DEPT OF
COMPUTER SCIENCE F 8 SCHNEIDER 05 OCT 87 TR-87-874

UNCLASSIFIED N89914-86--K-89F/i25 N'EM 892l..., / M



dH~L2llI 12.5

11111 1.25 _____

MICROCOPY RESOLUTION TEST CHART
NAT IONAL BUREAU OF STANDARDS 1963-A

0%



Unclassified F~ILE CUP1 Q '
REPORT DOCUMENTATION PAGE

A -Alb RESTRICTIVE MARKINGS

3 DISTRIBUTION/ AVAILABILITY OF REPORT

2b DECLASSIFICATION /DOWNGRADING SCHEDULE
Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-87-874

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)
Cornell University jOffice of Naval Research

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Department of Computer Science 800 North Quincy Street
Upson Hall, Cornell University Arlington, VA 22217-5000
Ithaca, NY 14853

8a. NAME OF FUNDINGISPONSORING Bb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Office of Naval Research NOOOOI4-86-K-O092

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

800 North Quincy Street PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217-5000 ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

Decomposing Properties into Safety and Liveness using Predicate Logic

12 PERSONAL AUTHOR(S)
Fred B. Schneider

13a TYPE OF REPORT 113b. TIME COVERED 14 DATE OF REPORT (YearMonth, Day) 15 PAGE COUNT
Interim IFROM TO ____IOctober 5, 19874

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP safety properties, liveness properties, oncurrency,

semantics

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
%

A new proof is given that every property can be expressed as a conjunction of safety
and liveness properties. The proof is in terms of first-order predicate logic.

.P

.17

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
3I]UNCLASSIFIED/UNLIMITED 0I SAME AS RPT. 0 DTIC USERS

'22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Inclde Area Code) 22c OFFICE SYMBOL
Fred B. Schneider (607) 255-921

4 DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
4 All other editions are obsolete.

0, p., . ;-A .



Decomposing Properties into Safety and Liveness

using Predicate Logic

Fred B. Schneider

Department of Computer Science
Cornell University

Ithaca, New York 14853

October 5, 1987

ABSTRACT

A new proof is given that every property can be expressed as a conjunction of safety and
liveness properties. The proof is in terms of first-order predicate logic.

Accer -J"-

INTIS c
DTIC T,',-

Urar :

*This matrijal is basnd on work supported in part by the Office of Naval Research under contract N00014-86-K.0092
and the National Science Foundation under Grant No. CCR-8701 103. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the author and do not reflect the views of the Office of Naval Research
or National Science Foundation.

@4r



1. Introduction

-- Two classes of properties are of particular interest when consdering prografs: safety properties
and liveness properties. Informally, a safety property stipulates tht "bad things" do not happen dur-
ing execution of a program and a liveness property stipulates that "good things" do happen (eventu-
ally) 1[21. Distinguishing between safety and liveness properties is useful because knowing whether a
property is safety or liveness helps when deciding how to prove that the property holds for a program.

In [11], formal definitions of safety and liveness are given and it is proved that every property
can be expressed as the conjunction of a safety property and a liveness property. The formal
definitions of safety and liveness are given in terms of first-order predicate logic, but the proof that
every property can be decomposed into safety and liveness is not-it uses topology. The purpose of

%this paper is to give a proof of this theorem using only first-order predicate logic.

2. Specifying Properties

A program state is a mapping from variables to values. An execution of a concurrent program
can be viewed as an infinite sequence of program states

a= S0O 1

which we call a history. In a history, so is an initial state of the program and each subsequent state
results from executing a single atomic action in the preceding state. (For a terminating execution, an
infinite sequence is obtained by repeating the final state.) A property is a set of such sequences.

One way to specify a property is by using first-order predicate logic. For a state s, define s.v to
be the value of variable v in that state. A formula of first-order predicate logic where s is the only free
variable defines a set of states. For example,

(Vi: I!5i<N: s.a[il:5s.a[i+l])

specifies the set of states in which the elements of array a[l:N] are sorted. Usually "s." is implicit
and therefore left out of such a formula, resulting in the more familiar use of first-order predicate
logic as an assertion language.

A set of sequences of states-a property--can also be defined using first-order predicate logic.
To facilitate such specifications, for any sequence a = so s I ... define for Oi:

0(i] a si.
C[i] a Sos, ... si-1. The empty sequence if i =0.

IaI z the length of a (oif a is infinite).

A formula of first-order predicate logic in which 7 is the only free variable defines the set of
sequences that satisfy the formula and therefore specifies a property. For example,

(Vi: 05i: O[iIv=O)

specifies the property in which the value of v remains 0 throughout execution.

--



We write al=P if o S" is in the property specified by P. Thus,

w-=P = Pga.

atfP = -pQ

3. Safety and Liveness

According to [1], a property P is a safety property provided

Safety: (Va: cc So': olP = (3i: 0<i: (Vp: 3E SW: [..iJ]1P))), (3.1)

where S is the set of program states, S* the set of finite sequences of states, S) the set of infinite
sequences of states, and juxtaposition is used to denote catenation of sequences. A property P is a
liveness property provided

Liveness: (Va: ar S*: (3p: P3E SW: ap3=P)). (3.2)

Given a property P, we are interested in defining properties Safe (P) and Live (P) such that

" Safe (P) is a safety property,

* Live (P) is a liveness property, and

" P = Safe (P) A Live (P).

Observe that if

Safe (P) = P v Mp
Live (P) = P v--,Mi

then

Safe (P) A Live (P) = (P V Mp) A (P V -,Mp)
= (P AP) V (P AMp) V (Mp AP) V (Mp A-,Mp)
= P

Hence, we have only to look for an M, that makes P v Mp (i.e. Safe (P)) a safety property and
P v --,Mp (i.e. Live (P)) a liveness property.

It turns out that using

Mp: (Vi: 05i: (3: Pe SW: c[..i]3=P))

suffices. First, we show formally that Safe (P) satisfies definition (3.1) of safety. The proof that fol-
lows is a sequence of first-order predicate logic formulas with explanations interspersed (and delim-
ited by v and *) of how each formula is derived from its predecessor.

Choose any cE S:

aWSafe (P)

-2-



cby definition of Safe (P)*
= aW:(Pv(Vi: 0O5i: (313: 3E SW: a[AII3I=P)))

(<by definition of 1# *
= -1(Pv(Vi: 05i: (313: 3E S': .iI3P))

*by substitution*
= -(P v(Vi: 05i: (3p3: I3ESW: a;[..iI13P)))

oby De Morgan's Laws))
-, -PA (3i: 05i: (VP3: PE SO: o[..]131#P))

4A A B =B*
=(3i: O:Si: (VP3: PESO): 0[i]1P1#P))

4because (Vx:: A) =(Vx:: A A(Vy:: Ax))*.
= (3i: 05i: (VP3: 0 E S'O: G[..iI13I&A (VY' YE So): O[..iy 1P)))

<<because true AP = Pand ([A.i1p)[..iI = [AI *
-(3i: 05i: (VP3: PE So): a[..i1315iP A (i=i) A (VT. YE So': (0[..i]1)[..iYI'iP)))

<<by substitution*
-(3i: 05i: (V13: 0 C S': O[J..iI#~P A (k=i) A (VT. ye S': (7T[.i1P)[..kjY1#P) ))

ocby 3-Generalization*
=~(3i: 0!5i: (VP3: P3E SWO: CA..]13 PA (3k: k=i: (VT. YE So): ([.I3[.~I')

A (by Range Widening~o
~(3i: 0:5i: (V3: P3E S': 0[A.]1#P A (3k: 05k: (VT. ye So': (o[..iI1)[..k]YI 'P))))

<(by De Morgan's Law*
-(3i: 0:5i: (VP3: D3ES*: 0[..]13 'PA-,(Vk: 05k: (3y. yE S(W: ([.l3.ky=)

<,i:by definition of 1#
= O3i 0i: (VP3: D3E SW*: GAl..i1#P A a[A.iI13(Vk: 0!5k: (3T. YE SWO: ([..kjyt-P))))

4because cO#A A al#B = atI#(A v )
= (3i: O! i: (VO: 13E S': a[..iI1I(P v(Vk: 0O5k: (3 y: YE So): at..k jyPP)))))

qby definition of Safe (P)*
= (3i: O5i: (VP3: P3E S': a;[..i]13Sfe(P)))

'4 It is not surprising that Safe (P) is a safety property. If oI1"Safe (P) then, by definition, W#~Mp. How-

ever, this means there exists an i such that

We could consider prefix a[J I] to be a "bad thing". Thus, cy violates a safety property whenever

oWSafe (P).

We now show formally that Live (P) satisfies definition (3.2) of liveness.

.. (Va: aE S*: true)

osznce true = A v -A
=(Va: e S*: (313: P3E S': 40iIP) v-(35: 3e S': ct13=P))

* *renamning bound variable 13 to y*
= (Va: tE S*: (313: P3e S0: c43P) v-,(3-.yr ySW: cry P))

*since P is not free in (3T. YE SW: ayl=-P)*
= (Va: a eS *: (313: P r S 0: aj3=P v -,(3T. ye S0 : ay 1-P)))

vby De Morgan's Law*
= (Va: aE 5": (313: P3E SO: a131=P V (VY: YE S): ayh'P)))

* -3-



<(since trueAA =A*
= (Va: aES*: (3(3: (3ES': aP0lPV(IaI=IaI A(Vy YES'O: ay 'P))))

<(by substitution, since (cx1)[.. I al I]=a*
= (Va: aES*: (3p3: 3E SW0: cc(3=PV((i=IccI)i 1 A(V-f YE S':(a)[.yP)))

<<by 3-Generalization*o
S(Vax: aE S: (3p3: P3ESO: ocD=P v(3i: i= Ial: (VT.y YSW: (4).iy~))

<by Range Widening*
S(Va: aE S*: (3p3: PE SW*: apl3-P v (1i: O: i: (Vy. 'YE So): (c43)[.Jy #P))))

<<by De Morgan's Law*
= (Va: acE S*: (3(3: PE SW): c431=P v -,(Vi: O~i: (3y. yE So): (IM.~~)

<<by definition of c431=A *
= (Va: aE S: (3p3: P3E S(O: a(3=P vtI :5i: (3y yE So): Iiy=))

<dbecause a3l'=A v c431=-B = af31=(A v B)*
= (Voc: ae S: (3p3: P3ES : a40--(P v -(Vi: 05!: (3y YES(): aY[..iY0P))))

<(by definition of Live (P)*
= (Va: aE S*: (3p3: O3E S(W: c43=Live(P)))

oby Liveness definition (3.2)*
= Live (P) is liveness.

An informal justification that Live (P) is liveness is the following. If aIl#Uve (P) then, by definition,
* a-=Mp. From, WA=Mp, we conclude that it always remains possible for some "good thing" (i.e. P(in

Mp) to happen. This is the defining characteristic of liveness, so a violates a liveness property when-
ever a #Live (P).

A' Acknowledgment
David Gries made numerous suggestions-some of which I even adopted-about presenting dhe proofs.

References

*[1] Alpern. B.. and F.B. Schneider. Defining liveness. Information Processing Letters 21 (Oct. 1985), 181-185.

[21 Lamport L. Proving the correctness of multiprocess programs. IEEE Trans. on Sofiuwre Engineering SE-3, 2
(March 1977), 125-143.

6 -4-



--Z- 1-fe-.%-%-


